Лучший Форекс-брокер – компания «Альпари». Выгодные торговые условия, более 2 млн. клиентов, положительные отзывы реальных трейдеров, уникальные инвестиционные сервисы, множество бонусов, акций и призовых конкурсов, торговля валютами, металлами и CFD, качественная аналитика и обучение.
Обучение Forex Лучшие брокеры

Методология тестирования модели на основе обращенного Медленного %К

Модель выполняется со значением mode — 1 для получения набора фактов. Набор фактов загружается в N-TRAIN — набор для разработки нейронных сетей Scientific Consultant Services (516-696-3333), масштабируется и перетасовывается, как это необходимо при разработке нейронной сети. Затем обучается набор сетей, начиная с маленькой и кончая весьма большой; в основном это простые 3-слойные сети. Также обучаются две 4-слойные сети. Все сети тренируются до максимальной конвергентности и затем «полируются» для удаления мелких отклонений или сдвигов. Процесс «полировки» обеспечивается снижением интенсивности обучения до очень низкой и еще примерно 50 прогонами после этого.

В табл. 11-1 приводится информация о всех сетях, обучавшихся для этой модели, с коэффициентами корреляции и другими показателями. В таблице указаны название файла, содержащего сеть, размер — число слоев и число нейронов в каждом из слоев, число связей в сети, оптимизированных при обучении (подобно количеству коэффициентов регрессии при множественной регрессии и их связи с излишней подгонкой под исторические данные), и корреляция — множественная корреляция выхода сети с его целевым значением. Скорректированные на излишнюю подгонку под входные данные значения корреляции занимают два столбца: в левом — коррекция исходя из обучения на наборе в 40 000 точек данных, в правом — исходя из 13 000 точек. Последние строки содержат реальное количество точек данных, а также их количество, предполагаемое при расчете коррекции.

Количество точек данных, использованное при расчете коррекции коэффициентов корреляции, меньше, чем реальное их количество в наборе для обучения. Причина в повторяемости фактов, а именно в том, что факт, основанный на некоторой точке данных, с большой вероятностью будет весьма подобен факту, основанному на соседней точке. Из-за этого «эффективное» число точек данных в отношении статистически независимой информации будет уступать реальному. Мы использовали два разных прореживания данных, представленных в двух столбцах. Процесс коррекции корреляций подобен процессу коррекции вероятностей множественных тестов при оптимизации: при прогонке параметра через ряд значений полученные результаты для соседних значений, скорее всего, будут подобны, что снижает эффективное количество тестов по сравнению с реальным.

Содержание Далее  


Рекомендуем: надежный брокер с качественным сервисом, представленный на рынке с 1998-го года. Выгодные торговые условия по валютам и бинарным опционам («фиксированным контрактам»). Депозит – от $0, спред – от 0 пунктов. Есть бесплатное обучение, финансовая аналитика и выгодная программа лояльности.



Яндекс.Метрика
«Приветственный» бонус в размере $30 от одного из лучших Форекс-брокеров – компании «RoboForex»