Теория Обучение Литература Статьи Лучшие брокеры Forex

Трактовка статистических показателей

В примере 1 представлен тест с проверкой системы, в примере 2 — оптимизация на данных из выборки. При обсуждении результатов мы возвращаемся к естественному порядку проведения тестов, т.е. сначала оптимизация, а потом проверка.

Результаты оптимизации. В табл. 4-2 показаны результаты анализа данных из выборки. За 5 лет периода оптимизации система провела 118 сделок (n = 118), средняя сделка дала прибыль в $740,97, и сделки были весьма различными: стандартное отклонение выборки составило около $3811. Таким образом, во многих сделках убытки составляли тысячи долларов, в других такого же масштаба достигали прибыли. Степень прибыльности легко оценить по столбцу «Прибыль/Убыток», в котором встречается немало убытков в $2500 (на этом уровне активировалась защитная остановка) и значительное количество прибылей, многие более $5000, а некоторые даже более $10 000. Ожидаемое стандартное отклонение средней прибыли в сделке показывает, что если бы такие расчеты многократно проводились на схожих выборках, то среднее колебалось бы в пределах десяти процентов, и многие выборки показывали бы среднюю прибыльность в размере $740 ± 350.

Т-критерий для наилучшего решения составил 2,1118 при статистической значимости 0,0184. Это весьма впечатляющий результат. Если бы тест проводился только один раз (без оптимизации), то вероятность случайно достичь такого значения была бы около 2%, что позволяет заключить, что система с большой вероятностью находит «скрытую неэффективность » рынка и имеет шанс на успех в реальной торговле. Впрочем, не забывайте: исследовались лучшие 20 наборов параметров. Если скорректировать статистическую значимость, то значение составит около 0,31, что вовсе не так хорошо — эффективность вполне может оказаться случайной. Следовательно, система имеет некоторые шансы на выживание в реальной торговле, однако в ее провале не будет ничего удивительного.

Серийная корреляция между сделками составляла всего 0,0479 при значимости 0,6083 — в данном контексте немного. Эти показатели говорят, что значительной серийной корреляции между сделками не наблюдалось, и вышеприведенный статистический анализ, скорее всего, справедлив.

За время проведения теста было 58 прибыльных сделок, т.е. доля прибыльных сделок составила около 49%. Верхняя граница 99%-ного доверительного интервала количества прибыльных сделок составила около 61%, а нижняя — около 37%. Это означает, что доля прибыльных сделок в популяции данных с вероятностью 99% попала бы в интервал от 37 до 61%. Фактически коррекция по оптимизации должна была бы расширить доверительный интервал; но мы этого не делали, поскольку не особенно интересовались показателем доли прибыльных сделок.

Результаты проверки. В табл. 4-1 содержатся данные и статистические заключения по тестированию модели на данных вне выборки. Поскольку все параметры уже определены при оптимизации и проводился всего один тест, мы не рассматривали ни оптимизацию, ни ее последствия. За период с 1.01.1995 г. по 1.01.1997 г. система привела 47 сделок, средняя сделка дала прибыль в $974, что выше, чем в выборке, использованной для оптимизации! Видимо, эффективность системы сохранилась.

Стандартное отклонение выборки составило более $6000, почти вдвое больше, чем в пределах выборки, по которой проводилась оптимизация. Следовательно, стандартное отклонение средней прибыли в сделке было около $890, что составляет немалую ошибку. С учетом небольшого размера выборки это приводит к снижению значения t-критерия по сравнению с полученным при оптимизации и к меньшей статистической значимости — около 14%. Эти результаты не слишком плохи, но и не слишком хороши: вероятность нахождения «скрытой неэффективности» рынка составляет более 80%. Но при этом серийная корреляция в тесте была значительно выше (ее вероятность составила 0,1572). Это означает, что такой серийной корреляции чисто случайно можно достичь лишь в 16% случаев, даже если никакой реальной корреляции в данных нет. Следовательно, и t-критерий прибыли/убытка, скорее всего, переоценил статистическую значимость до некоторой степени (вероятно, на 20 — 30%). Если размер выборки был бы меньше, то значение t составило бы около 0,18 вместо полученного 0,1392. Доверительный интервал для процента прибыльных сделок в популяции находился в пределах от 17 до приблизительно 53%.

В общем, оценка показывает, что система, вероятно, сможет работать в будущем, но без особой уверенности в успехе. Учитывая, что в одном тесте вероятность случайности прибылей составила 31%, в другом, независимом, — 14% (с коррекцией на оптимизацию 18%), шанс того, что средняя сделка будет выгодной и система в будущем сможет работать, остается неплохим.

Содержание Далее  


Для беспроблемного трейдинга рекомендую брокера Forex4you – здесь разрешен скальпинг, любые советники и стратегии; также можно иметь дело с Альпари; для инвесторов – однозначно Альпари с его множеством инвестиционных возможностей. – примеч. главного админа (актуально на 17.06.2018 г.).



Лучшие
брокеры:
        Альпари           Exness           Binomo
Кнопочка ТИЦ      Брокер «Альпари»      Брокер «Exness»      Брокер «Binomo»

Яндекс.Метрика