Теория Обучение Литература Статьи Лучшие брокеры Forex

Результаты выходов по описанным правилам для длинных и коротких позиций

В табл. 15-5 приведены результаты торговли с помощью 10 лучших решений (длинные и короткие позиции), использующих МССВ и генетически разработанные сигналы выхода. Входы в рынок были случайными. В таблице отдельно показаны результаты длинных и коротких позиций. Данные также разбиты по номеру теста и по виду выборки. Символы В и ВНЕ означают результаты тестов на данных в пределах выборки и вне пределов выборки соответственно. СТАНД означает тест с использованием только МССВ, ГЕН — тест МССВ в сочетании с генетически разработанными правилами.

В длинных позициях в пределах выборки добавление правил значительно снизило средний убыток в сделке — с $688 до $324. Процент прибыльных сделок повысился с 41 до 43%. Годовое соотношение риска/прибыли улучшилось с —0,35 до —0,17. Вне пределов выборки эффект генетически разработанных сигналов выхода сохранился, хотя и в меньшей степени. Средний убыток в сделке снизился с $1135 до $990. Процент прибыльных сделок повысился с 39 до 41 %.Соотношение риска/прибыли улучшилось с —0,61 до —0,60. В общем, добавление генетически разработанных правил к стандартной стратегии выходов себя оправдало. В отличие от нейронных сигналов выхода эффект сохранился вне пределов выборки, т.е. подгонка под исторические данные и избыточная оптимизация не имели решающего значения.

В коротких позициях как в пределах, так и вне пределов выборки отмечен подобный положительный эффект. В пределах выборки добавление генетически разработанного сигнала выхода снизило средний убыток в сделке с $2084 до $1645. Процент прибыльных сделок не изменился. Как ни странно, годовое соотношение риска/прибыли ухудшилось с —1,09 до — 1,15. Вне пределов выборки средний убыток в сделке значительно уменьшился: с $1890 до $1058. Процент прибыльных сделок вырос с 38 до 40%, а годовое соотношение риска/прибыли улучшилось с —1,02 до —0,73. Как и ранее, добавление генетически найденного правила выхода к системе МССВ доказало свою эффективность и вне пределов выборки.

Эффективность длинных позиций на различных рынках

В табл. 15-6 приведена информация о работе системы МССВ совместно с генетически разработанными правилами выхода из длинных позиций на различных рынках. Как в пределах, так и вне пределов выборки были выгодны несколько рынков: NYFE, сырой нефти, неэтилированного бензина и живых свиней. Другие рынки были прибыльными в пределах выборки и убыточными вне пределов выборки, или наоборот. Взаимосвязь между результатами торговли в пределах и вне пределов выборки была низкой.

Эффективность коротких позиций на различных рынках

В табл. 15-7 приведены результаты выходов из коротких позиций, произведенных на основе МССВ и правил выхода, разработанных с помощью генетических алгоритмов. Здесь связь между эффективностью в пределах и вне пределов выборки была более выраженной. Особенно примечательна прибыль в обеих выборках, полученная на рынке иены. Также были прибыльны рынки сырой нефти, неэтилированного бензина, откормленного скота, живых свиней, соевой муки и кофе.

ЗАКЛЮЧЕНИЕ

Вышеприведенные тесты продемонстрировали ряд важных фактов. Во-первых, нейронные сети вне пределов выборки продемонстрировали меньшую устойчивость, чем генетически разработанные правила. Это, несомненно, связано с большим числом параметров в нейронной сети по сравнению с моделями на основе правил. Иными словами, нейронные сети страдали от избыточной подгонки под исторические данные. Кроме того, было показано, что добавление сложного сигнала выхода, будь то нейронная сеть или набор правил, полученных с помощью генетической эволюции, может значительно улучшить стратегию выходов. При использовании более устойчивых генетических правил полученные преимущества сохранились и при работе вне пределов выборки.

Нейронная сеть и шаблоны правил были изначально предназначены для работы в системах входов и проявили себя достаточно хорошо при генерации редких сигналов входа. В стратегии выходов были бы предпочтительны правила, генерирующие сигналы значительно чаще. Существует обоснованное мнение, что набор шаблонов правил, специально предназначенный для разработки сигналов выхода, был бы гораздо более эффективен. То же самое относится и к нейронным сетям.

ЧТО МЫ УЗНАЛИ?

Избыточная подгонка под исторические данные вредна не только при создании входов, но также и выходов.

Сложные технологии, включая генетические алгоритмы, могут быть эффективно использованы для улучшения стратегий выхода.

Даже грубые попытки улучшения выходов, подобные приведенным здесь, могут улучшить среднюю прибыль в сделке на сотни долларов.

Содержание Далее  


Для беспроблемного трейдинга рекомендую брокера Forex4you – здесь разрешен скальпинг, любые советники и стратегии; также можно иметь дело с Альпари; для инвесторов – однозначно Альпари с его множеством инвестиционных возможностей. – примеч. главного админа (актуально на 12.04.2018 г.).



Лучшие
брокеры:
        Альпари           Exness           Binomo
Кнопочка ТИЦ      Брокер «Альпари»      Брокер «Exness»      Брокер «Binomo»

Яндекс.Метрика