Теория Обучение Литература Статьи Лучшие брокеры Forex

ТЕСТЫ МОДЕЛЕЙ, ОСНОВАННЫХ НА РАСХОЖДЕНИИ

Тесты 13 — 21 рассматривают расхождения графиков цены и стохастического осциллятора, RSI и MACD. Расхождение — это концепция, используемая техническими трейдерами для описания явления, легко заметного на графике, но трудно поддающегося алгоритмическому определению и анализу. Примеры расхождения изображены на рис. 7-1. Расхождение появляется, когда рынок образует провал, более низкий, чем провал или пара провалов, образованных в это время осциллятором, указывая, таким образом, на покупку. Сигнал к продаже возникает в противоположной ситуации. Поскольку формы волн могут быть самыми разными, определение расхождений — нетривиальная задача. Хотя наш алгоритм устроен элементарно и далек от совершенства, при исследовании графиков он дает достаточно надежные результаты, чтобы сулить о качестве основанных на расхождении систем.

Мы будем обсуждать только сигналы покупки, поскольку сигналы продажи представляют собой их точную противоположность. Логика алгоритма такова: в течение обозреваемого исторического периода (1епЗ) находят дни с минимальным значением в ценовой серии и в значениях осциллятора. Затем проверяют ряд условий: во-первых, минимум ценового ряда не должен приходиться на текущий день (т.е. должно начаться повышение), но попадать в пределы прошлых шести дней (т.е. этот провал должен быть близок к текущему моменту). Минимум в ценовой последовательности должен иметь место не менее чем через четыре дня в последовательности значений осциллятора (глубочайший провал осциллятора должен опережать глубочайший провал цен). Еще одно условие состоит в том, чтобы минимальное значение осциллятора не приходилось на первый день в обозреваемом периоде (т.е. должен быть сформирован минимум). Лучше, чтобы осциллятор был в самом начале обратного движения (что определяет второй провал как сигнал к покупке). Если все условия выполнены, то расхождение налицо и отдается приказ на покупку. Если приказ на покупку не отдан, то подобным же образом производится поиск расходящихся пиков, и при их обнаружении и соответствии подобным критериям отдается приказ на продажу. Такая методика достаточно хорошо находит расхождения на графиках. За исключением вида входов, единственное различие в тестах с 13 по 21 — это используемый вид осциллятора.

Тесты 13—15. Модели расхождения цены и стохастического осциллятора. Со стандартными входами использовался Быстрый %К. Оптимизация состояла в прогонке периода стохастического осциллятора от 5 до 25 с шагом 1 и обозреваемого периода расхождения от 15 до 25 с шагом 5. Лучшие параметры для периода и длины составили 20 и 15 для входа по цене открытия, 24 и 15 для входа по лимитному приказу и 25 и 15 для входа по стоп-приказу. Как в пределах, так и вне пределов выборки эффективность этой модели была в числе худших; в пределах выборки несколько лучше работал вход по лимитному приказу, вне пределов — вход по стоп-приказу. В пределах выборки при использовании всех видов входов прибыль была получена на рынках неэтилированного бензина, соевых бобов и соевой муки; при входе по лимитному приказу также были прибыльны рынки золота и свиной грудинки. Вне пределов выборки неэтилированный бензин был прибыльным со всеми видами входов, соевые бобы — при входах по цене открытия и по стоп-приказу. Вне пределов выборки прибыль была получена на большем количестве рынков, причем наилучших результатов удалось достичь при использовании входа по стопприказу. Такое явление, несомненно, показывает, что оптимизация не оказывала влияния на результаты, а также то, что на рынках в последние годы произошли изменения, повысившие эффективность использования подобных моделей. Это может быть объяснено снижением числа трендов и более неровным характером торговли на многих рынках.

Тесты 16—18. Модели расхождения цены и RSI. Оптимизация состояла в прогонке периода RSI от 5 до 25 с шагом 1 и обозреваемого периода расхождения от 15 до 25 с шагом 5. В общем, результаты были плохими. В пределах выборки наименее убыточным был вход по стоп-приказу, за ним следовал вход по лимитному приказу. Поскольку RSI — один из излюбленных индикаторов, используемых при поисках расхождения, такие плохие результаты достойны особого внимания. Мазут приносил прибыли со всеми видами входов, неэтилированный бензин был весьма прибылен при входе по цене открытия и по стоп-приказу, сырая нефть — при входе по лимитному приказу и по стоп-приказу. В пределах выборки со всеми входами были прибыльны соевые бобы, с входом по стоп-приказу неплохо работали апельсиновый сок, кукуруза, соевое масло и свиная грудинка. Вне пределов выборки рынок нефтепродуктов не приносил устойчивых прибылей, а соевые бобы оставались прибыльными со всеми видами входов; апельсиновый сок и соевое масло по-прежнему приносили прибыль при входе по стоп-приказу.

Тесты 19—21. Модели расхождения цены и MACD. Период короткого скользящего среднего прогонялся от 3 до 15 с шагом 2; период длинного скользящего среднего — от 10 до 40 с шагом 5; обозреваемый период расхождения — от 15 до 25 с шагом 5. Исследовались только те наборы параметров, где период длинного скользящего среднего был значительно больше, чем период короткого.

Наконец-то модели, которые работают, принося положительную прибыль и в пределах, и вне пределов выборки! При входе по цене открытия торговля была прибыльной в обоих образцах данных. В пределах выборки средняя сделка приносила $1393, прибыльными были 45% сделок, а вероятность случайности результатов была всего 8,7% (после коррекции 99,9%). И длинные, и короткие позиции были прибыльными. Несмотря на низкую статистическую достоверность в пределах выборки, вне ее пределов прибыли продолжались: с учетом проскальзывания и комиссионных средняя прибыль в сделке составила $140 при 38% прибыльных сделок (только короткие позиции были прибыльны).

Вход по лимитному приказу в пределах выборки работал несколько хуже, но вне пределов выборки — значительно лучше. На рис. 7-2 изображен график изменения капитала для теста с входом по лимитному приказу. В пределах выборки средняя прибыль в сделке составила $1250 при 47% прибыльных сделок (максимальное из полученных значений); прибыльными были и длинные, и короткие позиции, причем вероятность случайности прибылей составила 13,1% (после коррекции 99,9%). Вне пределов выборки модель приносила в среднем $985 в сделке, была прибыльной в 44% сделок, а вероятность случайности прибыли составляла всего 27,7%.

В пределах выборки вход по стоп-приказу давал максимальную среднюю прибыль в сделке, но вел к минимальному количеству сделок, из которых прибыльными были только короткие. Вне пределов выборки система терпела средний убыток размером в $589 в сделке, причем прибыльными были только короткие позиции. Вне зависимости от вида входов эта модель совершала сравнительно немного сделок.

Анализ отдельных рынков (табл. 7-1 и 7-2) подтверждает потенциал этих моделей. В пределах выборки больше рынков приносили прибыль, в обоих образцах данных по всем трем видам входов выгодны были рынки сырой нефти и кофе, многие рынки были прибыльными с двумя видами входов (например, мазут, живой скот, соевые бобы, соевая мука и лес).

Содержание Далее  


По нашей оценке, на 11.10.2018 г. лучшими брокерами являются:

• для торговли валютамиNPBFX;

• для торговли бинарными опционамиBinomo;

• для инвестирования в ПАММы и др. инструменты – Альпари;

• для торговли акциямиRoboForex Stocks (более 8700 инструментов – на счете R Trader).



Лучшие
брокеры:
        Альпари           Exness           Binomo
Кнопочка ТИЦ      Брокер «Альпари»      Брокер «Exness»      Брокер «Binomo»

Яндекс.Метрика